如何使用Tensorflow實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)-創(chuàng)新互聯(lián)

這篇文章給大家分享的是有關(guān)如何使用Tensorflow實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)的內(nèi)容。小編覺得挺實(shí)用的,因此分享給大家做個(gè)參考,一起跟隨小編過來看看吧。

創(chuàng)新互聯(lián)公司于2013年成立,先為集美等服務(wù)建站,集美等地企業(yè),進(jìn)行企業(yè)商務(wù)咨詢服務(wù)。為集美企業(yè)網(wǎng)站制作PC+手機(jī)+微官網(wǎng)三網(wǎng)同步一站式服務(wù)解決您的所有建站問題。

CNN大的特點(diǎn)在于卷積的權(quán)值共享結(jié)構(gòu),可以大幅減少神經(jīng)網(wǎng)絡(luò)的參數(shù)量,防止過擬合的同時(shí)又降低了神經(jīng)網(wǎng)絡(luò)模型的復(fù)雜度。在CNN中,第一個(gè)卷積層會直接接受圖像像素級的輸入,每一個(gè)卷積操作只處理一小塊圖像,進(jìn)行卷積變化后再傳到后面的網(wǎng)絡(luò),每一層卷積都會提取數(shù)據(jù)中最有效的特征。這種方法可以提取到圖像中最基礎(chǔ)的特征,比如不同方向的邊或者拐角,而后再進(jìn)行組合和抽象形成更高階的特征。

一般的卷積神經(jīng)網(wǎng)絡(luò)由多個(gè)卷積層構(gòu)成,每個(gè)卷積層中通常會進(jìn)行如下幾個(gè)操作:

  • 圖像通過多個(gè)不同的卷積核的濾波,并加偏置(bias),特取出局部特征,每個(gè)卷積核會映射出一個(gè)新的2D圖像。

  • 將前面卷積核的濾波輸出結(jié)果,進(jìn)行非線性的激活函數(shù)處理。目前最常見的是使用ReLU函數(shù),而以前Sigmoid函數(shù)用得比較多。

  • 對激活函數(shù)的結(jié)果再進(jìn)行池化操作(即降采樣,比如將2*2的圖片將為1*1的圖片),目前一般是使用大池化,保留最顯著的特征,并提升模型的畸變?nèi)萑棠芰Α?/p>

總結(jié)一下,CNN的要點(diǎn)是局部連接(local Connection)、權(quán)值共享(Weight Sharing)和池化層(Pooling)中的降采樣(Down-Sampling)。

將使用Tensorflow實(shí)現(xiàn)一個(gè)簡單的卷積神經(jīng)網(wǎng)絡(luò),使用的數(shù)據(jù)集是MNIST,網(wǎng)絡(luò)結(jié)構(gòu):兩個(gè)卷積層加一個(gè)全連接層。

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf

# 載入MNIST數(shù)據(jù)集,并創(chuàng)建默認(rèn)的Interactive Session。
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession()

# 創(chuàng)建權(quán)重和偏置,以便重復(fù)使用。我們需要給權(quán)重制造一些隨機(jī)的噪聲來打破完全對稱,比如截?cái)嗟恼龖B(tài)分布噪聲,標(biāo)準(zhǔn)差設(shè)為0.1
def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial)

def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)

# 創(chuàng)建卷積層、池化層,以便重復(fù)使用
def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

# 定義輸入的placeholder
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])

# 定義第一個(gè)卷積層
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool(h_conv1)

# 定義第二個(gè)卷積層
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool(h_conv2)

# 定義全連接層。由于第二個(gè)卷積層輸出的tensor是7*7*64,我們使用tf.reshape函數(shù)對其進(jìn)行變形
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# 為了減輕過擬合,下面使用一個(gè)Dropout層。通過一個(gè)placeholder傳入keep_prob比率來控制的。在訓(xùn)練時(shí),我們隨機(jī)丟棄一部分節(jié)點(diǎn)
# 的數(shù)據(jù)來減輕過擬合,預(yù)測時(shí)則保留全部數(shù)據(jù)來追求最好的預(yù)測性能。
keep_prob = tf.placeholder(dtype=tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 最后我們將Dropout層的輸出連接一個(gè)Softmax層,得到最后的概率輸出
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# 定義損失函數(shù)為cross entropy和優(yōu)化器
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

# 定義評測準(zhǔn)確率的操作
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

# 下面開始訓(xùn)練
tf.global_variables_initializer().run()
for i in range(20000):
 batch = mnist.train.next_batch(50)
 if i % 100 == 0:
  train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
  print("Step %d, training accuracy %g" % (i, train_accuracy))
 train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g" % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

# 載入MNIST數(shù)據(jù)集,并創(chuàng)建默認(rèn)的Interactive Session。
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession()

# 創(chuàng)建權(quán)重和偏置,以便重復(fù)使用。我們需要給權(quán)重制造一些隨機(jī)的噪聲來打破完全對稱,比如截?cái)嗟恼龖B(tài)分布噪聲,標(biāo)準(zhǔn)差設(shè)為0.1
def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial)

def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)

# 創(chuàng)建卷積層、池化層,以便重復(fù)使用
def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

# 定義輸入的placeholder
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])

# 定義第一個(gè)卷積層
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool(h_conv1)

# 定義第二個(gè)卷積層
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool(h_conv2)

# 定義全連接層。由于第二個(gè)卷積層輸出的tensor是7*7*64,我們使用tf.reshape函數(shù)對其進(jìn)行變形
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# 為了減輕過擬合,下面使用一個(gè)Dropout層。通過一個(gè)placeholder傳入keep_prob比率來控制的。在訓(xùn)練時(shí),我們隨機(jī)丟棄一部分節(jié)點(diǎn)
# 的數(shù)據(jù)來減輕過擬合,預(yù)測時(shí)則保留全部數(shù)據(jù)來追求最好的預(yù)測性能。
keep_prob = tf.placeholder(dtype=tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 最后我們將Dropout層的輸出連接一個(gè)Softmax層,得到最后的概率輸出
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# 定義損失函數(shù)為cross entropy和優(yōu)化器
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

# 定義評測準(zhǔn)確率的操作
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

# 下面開始訓(xùn)練
tf.global_variables_initializer().run()
for i in range(20000):
 batch = mnist.train.next_batch(50)
 if i % 100 == 0:
  train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
  print("Step %d, training accuracy %g" % (i, train_accuracy))
 train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g" % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

運(yùn)行結(jié)果:

如何使用Tensorflow實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)

感謝各位的閱讀!關(guān)于“如何使用Tensorflow實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)”這篇文章就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,讓大家可以學(xué)到更多知識,如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!

網(wǎng)站題目:如何使用Tensorflow實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)-創(chuàng)新互聯(lián)
文章位置:http://muchs.cn/article14/cdgcge.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供用戶體驗(yàn)、商城網(wǎng)站、企業(yè)建站、網(wǎng)站設(shè)計(jì)、企業(yè)網(wǎng)站制作網(wǎng)站排名

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

手機(jī)網(wǎng)站建設(shè)