Dijkstra算法最短路徑的示例分析-創(chuàng)新互聯(lián)

小編給大家分享一下Dijkstra算法最短路徑的示例分析,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!

成都網(wǎng)絡公司-成都網(wǎng)站建設公司成都創(chuàng)新互聯(lián)十載經(jīng)驗成就非凡,專業(yè)從事成都做網(wǎng)站、成都網(wǎng)站制作、成都外貿(mào)網(wǎng)站建設,成都網(wǎng)頁設計,成都網(wǎng)頁制作,軟文平臺,一元廣告等。十載來已成功提供全面的成都網(wǎng)站建設方案,打造行業(yè)特色的成都網(wǎng)站建設案例,建站熱線:028-86922220,我們期待您的來電!

某個源點到其余各頂點的最短路徑

這個算法最開始心里怕怕的,不知道為什么,花了好長時間弄懂了,也寫了一遍,又遇到時還是出錯了,今天再次寫它,心里沒那么怕了,耐心研究,懂了之后會好開心的,哈哈

Dijkstra算法:

Dijkstra算法最短路徑的示例分析

圖G

如圖:若要求從頂點1到其余各頂點的最短路徑,該咋求;

迪杰斯特拉提出“按最短路徑長度遞增的次序”產(chǎn)生最短路徑。

首先,在所有的這些最短路徑中,長度最短的這條路徑必定只有一條弧,且它的權值是從源點出發(fā)的所有弧上權的最小值,例如:在圖G中,從源點1出發(fā)有3條弧,其中以弧(1,2)的權值為最小,因此,(1,2)不僅是1到2的一條最短路徑,并且它可能是源點到其它各個終點的最短路徑中的一條子路徑。

其次,第二條長度次短的最短路徑只可能有兩種情況:①它或者只含一條從源點出發(fā)的弧且弧上的權值大于已求得最短路徑的那條弧的權值,但小于其他從源點出發(fā)的弧上的權值②它或者是一條只經(jīng)過已求得最短路徑的頂點的路徑。

例如圖G中,從1到其他各點。過程中,用d[i]保存從1到i的的最短路徑(過程會變化),初值為:若源點到該源點有弧,則為權值,否則初始化為無窮大,每求得一條到達某個終點i的最短路徑,就繼續(xù)檢查是否存在以此路徑為子路徑的到達其他點的最短路徑,若存在,判斷其長度是否比當前求得的路徑長度短,若短,就更新為更短的長度。

如圖G中,求得到2的最短路徑d[2]為10,就把d[2]作為與2相連的到其他點的子路徑繼續(xù)檢查,得到到3的最短路徑為d[2]+50=60

過程:

(1).令S={1},S集合中表示已經(jīng)找到最短路徑的結點,開始時1為源點,并設定d[i]的初始值為:d[i]=(1,i),

(2).求出到j點的最短路徑,j點為不在S集合中的某點

d[j]=min{d[i]}

(3).判斷所有沒在S集合中的頂點k,若d[k]>d[j]+(j,k)則修改d[k]的值為:

d[k]=d[j]+(j,k)

(4).重復(2).(3)操作共n-1次,每次操作,在(2)得到一個到

某點的最短路徑。

有向圖求最短路徑

#include<stdio.h>
#include<string.h> 
#include<stdlib.h>
#define max 900000000
//有向圖 
int main(){
  int n,m,a,b,v,i,j,min,k;
  scanf("%d%d",&n,&m);//輸入n個頂點,m條邊 
  int g[n+1][n+1],d[n+1],vis[n+1];//g[i][j]表示i到j的邊的權值,vis[i]表示到此頂點的最短路是否已經(jīng)找到,d[i]當前源點到i頂點的最短路徑 
  memset(vis,0,sizeof(vis));
  for(i=0;i<=n;i++){ 
    for(j=0;j<=n;j++){
      g[i][j]=max;
    }
    d[i]=max;  
  }
  for(i=0;i<m;i++){//i到j的邊權值儲存到g鄰接矩陣中,i點到j點無直接相連的邊時,g[i][j]=max 
    scanf("%d%d%d",&a,&b,&v);
    g[a][b]=v;
  }
  for(i=2;i<=n;i++){
      d[i]=g[1][i]; //初始化源點到i點邊權值,之后過程中會發(fā)生變化 
  }
  vis[1]=1;
  for(i=2;i<=n;i++){//共循環(huán)n-1次,每循環(huán)一次,確定一條最短路,再次循環(huán)時這條路就不用考慮了,去尋找下一條最短路 
    min=max;
    for(j=2;j<=n;j++){//尋找下一條當前最短路 
      if(d[j]<min&&vis[j]==0){
       min=d[j];
       k=j;
      }  
    }
    vis[k]=1;//找到了,到k點的路是當前最短路,標記它,根據(jù)它尋找下一條最短路 
    for(j=2;j<=n;j++){
      if(d[j]>d[k]+g[k][j]&&vis[j]==0){//經(jīng)過此k點到達j點的路徑是否小于其他到達j點的路徑 
        d[j]=d[k]+g[k][j];
      }
    }
  }  
  for(i=2;i<=n;i++){//輸出到達個點的最短路徑 
    printf("%d\n",d[i]);
  }
  return 0;
}

無向圖求最短路徑

無向圖也是相同思路:在構造鄰接矩陣時考慮對稱就行。

無向圖求最短路徑且有路徑輸出

在求最短路的過程中,最短路①它或者是從源點出發(fā)的弧②它或者是一條經(jīng)過已到其他最短路徑的頂點的路徑。

建立一個新的結構體類型path,該類型變量d表示到達某點的最短路徑距離 ,該類型變量pre表示該最短路徑是經(jīng)過哪個點傳過來的

#include<stdio.h>
#include<string.h> 
#include<stdlib.h>
#define max 900000000
typedef struct{ 
  int d;//到達某點的最短路徑距離 
  int pre;//該最短路徑是經(jīng)過哪個點傳過來的,源點或其他某個點 
}path;
//有向圖 
int main(){
  int n,m,a,b,v,i,j,min,k,from;
  scanf("%d%d",&n,&m);//輸入n個頂點,m條邊 
  int g[n+1][n+1],vis[n+1];//g[i][j]表示i到j的邊的權值,vis[i]表示到此頂點的最短路是否已經(jīng)找到,d[i]當前源點到i頂點的最短路徑 
  path to[n+1];//記錄當前到某個點的最短路徑以及從哪個點傳過來的 
  memset(vis,0,sizeof(vis));
  for(i=0;i<=n;i++){ 
    for(j=0;j<=n;j++){
      g[i][j]=max;
    }
    to[i].d=max;  
  }
  for(i=0;i<m;i++){//i到j的邊權值儲存到g數(shù)組中,i點到j點無直接相連的邊時,g[i][j]=max 
    scanf("%d%d%d",&a,&b,&v);
    g[a][b]=v;
    g[b][a]=v;
  }
  for(i=2;i<=n;i++){
      to[i].d=g[1][i]; //初始化源點到i點邊權值,之后過程中會發(fā)生變化 
      if(g[1][i]!=max){
       to[i].pre=1; 
      } 
  }
  vis[1]=1;
  for(i=2;i<=n;i++){//共循環(huán)n-1次,每循環(huán)一次,確定一條最短路,再次循環(huán)時這條路就不用考慮了,去尋找下一條最短路 
    min=max;
    for(j=2;j<=n;j++){//尋找下一條當前最短路 
      if(to[j].d<min&&vis[j]==0){
       min=to[j].d;
       k=j;
      }  
    }
    vis[k]=1;//找到了,到k點的路是當前最短路,標記它,根據(jù)它尋找下一條最短路 
    for(j=2;j<=n;j++){
      if(to[j].d>to[k].d+g[k][j]&&vis[j]==0){//經(jīng)過此k點到達j點的路徑是否小于其他到達j點的路徑 
        to[j].d=to[k].d+g[k][j];
        to[j].pre=k;//改變j點是誰傳來的,現(xiàn)在到j點的最短路徑是經(jīng)過k點的,由j點傳來 
      }
    }
  }  
  for(i=2;i<=n;i++){//輸出到達個點的最短路徑 
    printf("%d ",to[i].d);
    printf("%d ",i);
    j=i;
    while(j!=1){
      j=to[j].pre;
      printf("%d ",j);
    }
    printf("\n");
  }
  return 0;
}

以上是“Dijkstra算法最短路徑的示例分析”這篇文章的所有內(nèi)容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內(nèi)容對大家有所幫助,如果還想學習更多知識,歡迎關注創(chuàng)新互聯(lián)網(wǎng)站建設公司行業(yè)資訊頻道!

另外有需要云服務器可以了解下創(chuàng)新互聯(lián)建站muchs.cn,海內(nèi)外云服務器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務器、裸金屬服務器、高防服務器、香港服務器、美國服務器、虛擬主機、免備案服務器”等云主機租用服務以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務可用性高、性價比高”等特點與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應用場景需求。

名稱欄目:Dijkstra算法最短路徑的示例分析-創(chuàng)新互聯(lián)
網(wǎng)站地址:http://muchs.cn/article40/ideho.html

成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供移動網(wǎng)站建設、動態(tài)網(wǎng)站、自適應網(wǎng)站、面包屑導航、外貿(mào)網(wǎng)站建設外貿(mào)建站

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉載內(nèi)容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉載,或轉載時需注明來源: 創(chuàng)新互聯(lián)

成都網(wǎng)站建設公司